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Introduction
The Databricks Lakehouse is a powerful platform that allows 
organizations to store, process, and analyze massive amounts 
of data. Its key strength is its ability to handle complex data 
transformations within analytic or operational workloads. This 
means it can handle transformations for the models in your data 
warehouse or lakehouse, as well as for the data processing for your 
web app. 

Data transformations often consist of multiple stages where 
one table serves as input for another, or with subsequent 
transformation stages writing to layers or zones in your data lake: 
e.g. bronze, silver and gold. These stages and dependencies are 
defined through orchestration.

In this article we’ll have a look at different ways of 
orchestrating your Databricks workloads. More 
specifically, we will discuss the benefits and drawbacks 
of the following tools:

	▪ Databricks Jobs

	▪ Azure Data Factory

	▪ Airflow

	▪ dbt

	▪ Delta Live Tables

We hope this article will inspire fellow data engineers 
and architects during their next Databricks projects!

Databricks Jobs
Databricks Jobs is the native way of orchestrating tasks such as 
notebooks, jars, python applications, dbt jobs, or delta live tables. 
Connecting tasks in order of execution creates a workflow in the 
form of a Directed Acyclic Graph (DAG), as shown in the figure 
below. Databricks also allows you to schedule your job to run at a 
later time.

In DAGs like the one shown on the left, the nodes represent the 
tasks (transformations) and the edges represent the dependencies 
between the tasks. Usually, the edges correspond with tables or 
files in which intermediate results are stored.

It is generally recommended to use job clusters when running 
non-interactive workloads, because they are cheaper than 
interactive clusters (same as all-purpose compute). A job cluster 
can be shared among the tasks of a Databricks job. This means 
you only need to wait for one cluster to start, reducing run time 
and cost. However, job clusters can’t be shared across jobs. So 
when you have many parallel jobs with a variable workload, it may 
be beneficial to use one auto-scaling interactive cluster to avoid 
the overhead associated with running many job clusters in parallel 
– such as many driver nodes and the cost of high total cluster 
startup time.

A great feature of Databricks Jobs is that you can link a task 
directly to a notebook in a remote repository, instead of using 
notebooks from Repos or your Workspace. This way you can 
prevent people from unintentionally making changes to your 
notebooks or changing branches in the Databricks Repo that 
your job uses. This also means that you do not need a separate 
deployment step in your CI/CD flow.

Pros

	▪ Full control over your Databricks job (cluster parameters, 
monitoring, ...)

	▪ You can use a single job cluster for all tasks

	▪ Allows you to run delta live tables or dbt jobs as a task

	▪ Context sharing between tasks using Task Values

	▪ Direct link to your repository

	▪ Reduces TCO by keeping transformation and its 
orchestration in one tool

Cons

	▪ You can only orchestrate Databricks workloads. Dedicated 
orchestration tools can be used to integrate your Databricks 
job into a bigger workflow.

	▪ No straightforward way to store the workflow in a repository. 
You have to manually copy the json representation or use the 
jobs API of Databricks to automate this. This API can also be 
used for automated deployment.

	▪ Limited flow control, e.g. no way to include/exclude tasks 
based on conditions

More info: https://docs.Databricks.com/workflows/jobs/jobs.html

https://docs.Databricks.com/workflows/jobs/jobs.html
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Data Factory
Data Factory is the go-to orchestration and ingestion tool on 
Azure. It allows you to create, schedule, and manage data pipelines 
that can move and transform data from various sources to 
different destinations. Here we will focus on the capabilities of 
Data Factory to orchestrate Databricks workloads.

Data Factory is a dedicated orchestration and ingestion tool 
which allows for the creation of workflows that consist of much 
more than just Databricks tasks. You can create an end-to-end 
flow where data is extracted from a source and loaded into its 
destination. While in Databricks you can also connect to several 
sources and destinations (e.g. using Spark connectors or Python 
libraries), they are not visible in your DAG.

Data Factory allows you to run notebooks, jars, or python scripts 
on Databricks. These activities can be chained together to create a 
workflow, as shown in the image below. 

Data Factory provides more control in your flow than Databricks. 
You can use metadata in your flows, for example allowing the 
execution of one activity to depend on the status or output value 
of another. In Databricks jobs you are limited to Task Values.

There are, however, some limitations regarding the orchestration 
of Databricks workloads. For example, each activity (notebook, 
jar or python script) triggers one separate job. As a result, you 
cannot share a job cluster among them and a new cluster has to be 
started for each notebook, costing time and money. A solution is 
to use a shared interactive cluster, but these are more expensive. 
(As mentioned in the section on Databricks jobs, there are use 
cases with multiple parallel jobs where an interactive cluster 
might be cheaper). Another option would be to trigger a multi-task 
job which can be defined in Databricks. Unfortunately, there is 
no ADF activity for this purpose: you need to use a web activity, 
connecting to the Databricks Jobs API. 

Data Factory is also limited in its use of Databricks’ built-in 
features. It does not provide single-node job clusters, direct links 
to your notebook repository, or the ability to share clusters.

Pros

	▪ Advanced orchestration, allowing you to use metadata and 
conditional flows.

	▪ Integrates Databricks tasks in a bigger workflow.

	▪ Data integration next to orchestration.

Cons

	▪ Each notebook or jar triggers one separate job. 

	▪ There is no Databricks activity to run a Databricks job. You 
need to use a web activity.

	▪ Doesn’t provide all the options for Databricks, e.g. single-
node clusters.

	▪ Increases overall costs if introduced for the sole purpose of 
orchestration.

Airflow
Apache Airflow is an open-source platform for programmatically 
creating, scheduling, and monitoring workflows. Just like the 
tools discussed above, it allows users to define, execute, and 
manage workflows as directed acyclic graphs (DAGs) of tasks. 
Airflow provides a rich user interface for managing and monitoring 
workflows, and supports integration with various data sources and 
processing frameworks.

While Data Factory is a proprietary tool that is only available on 
Azure and focused on integration with other Azure tools, Airflow 
is open-source and can be used with a wider range of tools. One 
downside is that Airflow is not a managed tool: you need to provide 
the infrastructure on which it runs. Managed versions of Airflow do 
exist, such as Amazon MWAA, Data Factory Managed Airflow, and 
Cloud Composer.

Another significant difference with ADF is that in Airflow, you 
need to define your flows in a programmatic way in Python rather 
than through a UI. This might be more challenging for some, 
but it provides more flexibility and control. The flow can still be 
visualized as a DAG, as shown in the image below.

Airflow is more performant than Data Factory when it comes 
to the orchestration of Databricks workloads. It provides the 
following two operators (which use the Databricks Jobs API in the 
background):

	▪ DatabricksRunNowOperator: Run an existing Databricks job, 
consisting of one or multiple tasks.

	▪ DatabricksSubmitRunOperator: Create and run a new job in 
Databricks, consisting of a notebook, jar, python script or delta 
live tables pipeline (see below).

These operators are simple wrappers around the Databricks API 
call that allow you to submit the json payload that the API expects, 
and to make use of the full functionality of the corresponding 
endpoints of the Databricks API. Moreover, the first operator 
offers a functionality which is not available out-of-the box in Data 
Factory, where the use of a web activity is required.

Pros

	▪ Advanced orchestration: flexibility and fine-grained control.

	▪ Integrates Databricks tasks in a bigger workflow.

	▪ You can run existing Databricks jobs, not just notebooks or 
jars.

	▪ Full control over the Databricks job parameters.

Cons

	▪ Installation and management overhead, for the non-
managed option

	▪ Increases complexity (programmatic interface)

notebook_task spark_jar_task

Source: https://www.databricks.com/blog/2017/07/19/integrating-apache-
airflow-with-databricks.html
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Dbt
Dbt, or Data Build Tool, is a popular data transformation tool that 
allows you to write your transformations as SQL select statements. 
Additionaly, it lets you orchestrate your data flows.

Dbt is mainly used in ELT workflows for data warehouses such as 
Snowflake, BigQuery, or Databricks where the source data has 
already been loaded into the warehouse. Dbt takes care of turning 
that source data into data that is ready for BI consumption. This is 
the big difference with Data Factory or Airflow: with dbt we write 
the code for our transformations inside the dbt environment (we’re 
not using Databricks notebooks, jars or python scripts). Keep 
in mind though, while you write your SQL statements or python 
commands in dbt, it isn’t dbt who executes them. Instead, dbt 
provides the compiled SQL files to the target data warehouse that 
will execute them. The big advantage here is that your solution is 
more easily portable -- if you need to migrate to a different data 
warehouse, the transformation tool (dbt) and the majority of your 
SQL code can be kept (although there may be differences between 
the SQL flavors of the two data warehouses).

Dbt comes in two versions: managed (dbt Cloud) and open-source 
(dbt Core). dbt Core allows you to create data flows and define 
dependencies, while the managed tool adds several features such 
as the ability to schedule those flows.

New to dbt? Read more about it here.

Instead of defining your data pipelines using a set of tasks, dbt 
manages how your data is transformed using a set of tables 
or models. Using the source and target tables defined in your 
queries, dbt generates the DAG automatically. In your DAG, the 
nodes represent tables and the edges represent the dependencies 
between them. Those dependencies basically correspond with 
the transformations that turn one table into the other. Note the 
difference with the DAGs of the tools described above.

Pros

	▪ Provides data lineage

	▪ Automated data quality testing and documentation

	▪ Portability of your transformation code

Cons

	▪ No access to all features of Databricks Spark code (e.g. 
Structured Streaming)

	▪ Doesn’t allow for job clusters

	▪ No scheduling available in dbt Core

Delta Live Tables
Delta Live Tables (or dlt) is another framework within the 
Databricks offering that allows you to define your data flows. Flows 
are created based on tables and their dependencies, as in dbt.

Delta Live Tables can be seen as Databricks’ answer to dbt. Next 
to the table based DAGs, it also offers the automated data quality 
testing and the choice between SQL and Python to define your 
flows.

One major difference with dbt is that it supports streaming 
pipelines using Spark Structured Streaming. This is probably the 
most important use case of Delta Live Tables: specifying and 
managing the DAG of a streaming pipeline.

Pros

	▪ Supports streaming pipelines (<-> dbt)

	▪ Provides data lineage

	▪ Automated data quality testing

Cons

	▪ Is less portable to other data warehouses than dbt

	▪ More expensive compute than regular Databricks jobs

An advantage of this type of DAG is that it provides data lineage: a 
clear view of how the data flows through the system from table to 
table. This enables transparency and easier troubleshooting.

Dbt also offers an easy and structured way to integrate automated 
data quality testing and documentation into your flow.

After running your dbt job, dbt will have all the tables created 
that are part of your DAG and have them registered in the hive 
metastore or unity catalog.

With dbt you can either connect to regular Databricks clusters 
(from the Databricks Data Science & Engineering environment) 
or to Databricks SQL warehouses (from the Databricks SQL 
environment). The second option might make the most sense 
for dbt, since Databricks SQL is the data warehouse part of the 
Databricks Lakehouse. You do need to create the clusters or 
warehouses beforehand within your Databricks workspace, so you 
are not able to make use of cheaper job clusters.

Another drawback in using dbt to define your Databricks 
transformations is that it does not support streaming 
transformations, so limiting you to batch pipelines.

Instead of using regular job clusters, interactive clusters or SQL 
warehouses, dlt has its own type of compute. It is more expensive 
than jobs compute, but can be cheaper than interactive compute, 
depending on the dlt product edition (core, pro or advanced).

Dlt is native to Databricks, meaning that you cannot move your 
transformation code as easily as with dbt. Migration to another 
data warehouse will only be relatively easy if your transformations 
are non-streaming and written in SQL.

Source: https://docs.getdbt.com/docs/build/sql-models

Source: https://learn.microsoft.com/en-us/azure/databricks/workflows/
delta-live-tables/delta-live-tables-cookbook

https://docs.getdbt.com/docs/introduction
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Conclusion
As you can see: many tools exist to orchestrate your 
Databricks workloads. I hope this article has given 
you some insights on which one is best suited for your 
specific use case.

Are you interested in having one of these solutions 
implemented at your organization? Don’t hesitate to get 
in touch with us via the contact details below.

Good luck with your Databricks adventures!




